LambdaTable: Tiled Display Table for Working with Large Visualizations

Rat Cerebellum Microscopy (NCMIR)

Core Sample Imagery (JOI)

The Challenge

Facilitate group work with very large datasets.

Not just visualization, but *interacting* with data.

Our Approach

Apply:

Tangible User Interfaces
Table interaction findings
Co-present collaboration

Tiled display research Optical network research

Our Solution

Build an interactive tiled-LCD visualization table.

- Support Visualization
 - Large, high-res display
 - Rendering cluster to "power"
 - Optical network to "fuel"
- Support Interaction
 - Common surface
 - Multiple user interfaces
 - Tangible user interfaces

LambdaTable at EVL

Other Tables

InteracTable German Nat'l Research Center

iRoom Table

MetaDesk MIT Media Lab

And many others...

All use single projector Max < 1200x1600 Not good enough!

LambdaTable Implementation

Tangible User Interface Tracking

- Tracked devices embedded with IR markers
- 2D pattern matching problem
- Any number of distinct patterns
- Position & Rotation

- Initial prototype "mouse" device
- Tracked at 30fps (rate of camera)
- Additional LEDs used to encode button clicks

Tracking System Demo

Applications

- Fitts' Validation
- Galaxy application
 - Application to test tracked mouse interaction
 - First person fly through of Hipparcos and Tycho sets
- Map application
 - Graphical map plotted
 - Panning/rotation tested
 - Next: satellite overlays

LambdaTable + LambdaVision + SAGE

Ubiquitous displays + Common display manager = Integrated project room

Future Applications

Two Example Scenarios:

Terabyte Imagery Workbench

Multi-Sensor Situation Table

Terabyte Imagery Workbench

- Display multiple large images
 - Multiple core scans, microscope images, video and volumes at once
 - Lay maps, sat imagery out flat. Familiar for geoscientists.
- Arrange, link, and annotate images
 - Look for correlations between geographically separate cores
 - Mark fiduciary points with tangible markers
 - Highlight / extract regions of interest directly on the images
 - Embed metadata / comments
- Create persistent workspaces (High Res!)
 - Use screen real-estate for organization and grouping
 - Orient data correctly for multiple users around table
 - Track position, rotation of a workspace phicon
 - Can be used for extended time periods

Multi-sensor Situation Table

- Emergency response, military and airport control centers.
 - Map centric. Real time video, satelite and sensor data.
- Maintain situational awareness amongst group members.
 - Provide "big picture" without sacrificing important detail
 - Use tangible markers to
 - Identify highway, infrastructure conditions
 - Designate ROIs for wall displays
 - Provide points of reference to facilitate "common ground"
- Rapidly query multi-sensor / multi-spectral data
 - Layer data from different source
 - Use physical lenses to overlay satellite / infrared / weather imagery
- Low maintenance, always on, always ready

What's the Next Step?

This Fall:

- Build new TUIs (small markers, magic lens, instruments)
- Image manipulation app to test above devices
- Investigate IR reflectors to reduce pattern footprint / bulk

• This Spring:

- Evaluate / compare devices using human subjects
- SAGE integration, investigate project room paradigms

Next Summer and Beyond:

- Tile cameras to improve UI resolution
- Multi-input UI toolkit / Oriented multi-workspace toolkit

Funding Acknowledgements

- This equipment was supported in part by the OptlPuter grant from the National Science Foundation-Cooperative Agreement ANI-0225642.
- Also supported by the Office of Naval Research through an award from the Technology Research Education and Commercialization Center (TRECC).
- The student, unfortunately, is not funded. ☺

Thank You

Cole Krumbholz evl@colefusion.com

Cavern Group caverngroup@uic.edu

www.evl.uic.edu/cavern/sage www.evl.uic.edu/cole/table (coming soon)

Questions???

Fitts' Law Validation

Fitts' Law

- Target acquisition gets easier as target gets closer, larger
- Used to test if device "natural"
- Traditional mouse is a Fitts' Device
- Fitts' Application
 - Built 4 tile system
 - Target acquisition
 - 3 sizes, 9 positions
 - No target occlusion
- Results to come...
 - Initial interaction promising

What about tiled projectors?

- Maintenance Intensive
 - Colormatching
 - Bulb changes
- Costly
 - 1024x768, 3000 lumen = \$1600
 vs 1600x1200 LCD = \$1000
 - Bulb replacement = \$350
 - Higher resolution = \$\$\$!

LCD display table:

15 LCD panels - \$15,000

Equiv projector table:

136 projectors - \$217,600

Tiled LCDs

- Low Cost
- Bright
- Well colormatched
- Long "bulb life"
 - 3.5 years continuous
- Borders
 - Looking through windows
 - Explicitly hide pixels behind them to preserve continuity
 - Arrange text to avoid occlusion
 - OLED/Optics advancements may eliminate them altogether

Scalable Adaptive Graphics Environment (SAGE)

Live video feeds

Remote sensing

Volume Rendering

High-resolution maps

3D surface rendering

Remote laptop

1 ft per pixel aerial photography (USGS):

FTS SEED

